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Density functional theory (DFT) is a branch of 
quantum mechanics in which the emphasis is on the 
one-electron density function, p, rather than on the 
more usual wave function.' It goes back to the work 
of Hohenberg and Kohn, who proved that the ground- 
state energy of a chemical system is a functional of p 
only. A chemical system is a collection of nuclei and 
electrons. It may be an atom, an ion, a radical, a 
molecule, or several molecules, in a state of interaction. 
A functional is a recipe for turning a function into a 
number, just as a function is a recipe for turning a 
variable into a number. 

There are many important applications of DFT to 
chemistry. One is in the calculation of properties of 
atoms and molecules. These are much easier than and 
of similar accuracy to calculations using very good wave 
functions. For a system containing N electrons, the 
wave function depends on 4N space and spin coordi- 
nates. The electron density depends on only three space 
coordinates, and N enters as a simple multiplicative 
factor. Hence computations are very much simpler in 
DFT, especially for large systems. 

Another important use for DFT is in elucidating 
familiar chemical concepts. Since 1975, R. G. Parr and 
his co-workers have been particularly active in this area. 
The present paper will deal with two new properties of 
a chemical system, arising from this work. They are 
the electronic chemical potential, p,2 and the hardness, 
71.3 These are of great importance in determining the 
behavior of the system, and they lead to broadly 
applicable and useful principles. 

The definitions of these quantities are 

p = (waw,; 271 = (apian3, = 2 1 ~  (1) 
where E is the energy, N is the number of electrons, 
and v the potential due to the fixed nuclei. The softness, 
a = 1/71, is also a useful quantity. The name electronic 
chemical potential comes from the thermodynamic 
equation 

Here po is the ordinary chemical potential, and N is the 
number of molecules. The two, p and PO, are alike in 
that, at  equilibrium, they must be constant everywhere 
in the system. 

Classical thermodynamics also gives us 

(ap/ahT)V,T = -V(ap/av)/M = V / M K  (3) 
where K is the compressibility and Nis again the number 
of molecules. Comparison with eq 1 shows that the 
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chemical softness, u, is analogous to the mechanical 
softness, K. 

In spite of these similarities, there is no real rela- 
tionship between the two sets of quantities. The 
electronic chemical potential is not the electronic part 
of the thermodynamic chemical potential. The chem- 
ical hardness is not resistance to mechanical deforma- 
tion, but resistance to change in the number of electrons 
in the system, or to changes in the one-electron density 
function, p. 

Operational, and approximate, definitions of p and 
71 are 

(4) 
where I is the ionization potential and A is the electron 
affinity of the system. x is the absolute electronega- 
tivity. It is similar to, but not equal, to the Mulliken 
electronegativity. 

If we draw a plot of E vs N for any system, then p 
is simply the instantaneous slope of such a curve. 
Experimentally we only know points on the curve for 
integral values of N ,  from data such as ionization 
potentials and electron affinities. We do not know the 
instantaneous slope of the curve. However, if we pick 
the neutral species (or any other) as our starting point, 
we do know the mean slope for the change from ( N  - 
1) to N electrons. It is simply equal to -I. Also the 
mean slope from N to (N + 1) electrons is simply -A, 
Using the method of finite differences, we can approx- 
imate the slope at N as -(I + A)/2. 

In the same way, 271 is the curvature of a plot of E vs 
N .  Using finite differences again gives 7 = ( I  - A)/2. 
The factor of 2 was added arbitrarily to make ~1 and 7 
symmetrical. 

According to Koopmans's theorem, the ionization 
potential is simply the orbital energy of the HOMO, 
with change in sign. For spin-paired molecules, the 
electron affinity is the negative of the orbital energy of 
the LUMO; therefore, on an orbital basis, we can write 

71 = (ELIJMO - EHOM0)/2 (5) 
If we make the usual diagram of the MOs of a molecule 
as a function of their energies, p is avertical line halfway 
between the HOMO and the LUMO. The hardness is 
just half the energy gap between the 

Thus a hard molecule has a large energy gap, and a 
soft molecule has a small gap. In MO theory, the 
frontier orbitals also define the lowest excited state of 

-p = (I + A)/2 = X ;  7 = (I- A)/2 

CL = (EHOMO + €LUMO)/% 

(1) For a general introduction, see: Parr, R. G.; Yang, W. Density 
Functional Theory for A t o m  and Molecules; Oxford Press: New York, 
1989. 

(2) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 
1978,68, 3801-3807. 

(3) Parr, R. G.; Pearson, R. G. J .  Am. Chem. SOC. 1983,105,7512-7516. 
(4) Pearson, R. G. Proc. Natl. Acad. Sci. U.S.A. 1986,83,8440-8441. 
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Figure 1. Orbital energies for NH3: (a) pyramidal form; (b) 
planar form. 

the molecule. A large energy gap means a large energy 
difference between the ground state and the manifold 
of excited states of the same multiplicity. 

This is of great importance, since the quantum 
mechanical theory of response to a perturbation in a 
chemical system depends on this difference.5 Changes 
in electron density occur by mixing excited-state wave 
functions with the ground-state wave function. The 
mixing coefficient is inversely proportional to the energy 
difference between the states. Therefore soft molecules 
undergo changes in electron density, p,  more readily 
than hard molecules. 

Circumstantial Evidence Concerning Hardness 
The foregoing suggests that it is a good thing for a 

chemical system if it can arrange itself to be as hard as 
possiblea6 Since chemical reactions obviously require 
changes in the electron density distribution pattern, 
we expect soft molecules to be more reactive than hard 
molecules, in general. This is indeed the case.*J For 
example, HzS, with q = 6.2 eV, is certainly more reactive 
and less stable than HzO, with q = 9.5 eV. HzSe and 
HzTe are softer and more reactive still. 

A classic example is provided by the benzenoid 
hydrocarbom8 A plot of the experimental values of I 
- A against the resonance energy per electron (REPE) 
is a straight line. The REPE is a good measure of 
aromatic character, that is, reactivity and stability. 
Benzene has the largest value of I - A and is the most 
stable and least reactive. Pentacene has the smallest 
value of I - A and is the most reactive. 

Theoreticians who do MO calculations of molecular 
structures and energies always seem to find that the 
most stable structure has the largest HOMO-LUMO 
energy g a ~ . ~ , ~  Figure 1 illustrates this by showing an 
MO energy diagram for NH3 in its stable pyramidal 
form, and in the unstable planar form. 

The smaller gap in the latter case arises because the 
pL orbital of nitrogen is removed from bonding while 
still occupied. Thus it becomes the HOMO. A linear 
combination of hydrogen 1s orbitals is removed from 
an antibonding MO, is lowered in energy, and becomes 
the LUMO. 

Table I shows the results of some calculations by the 
extended Huckel method for the closo-borane anions.1° 

(5 )  This is often discussed under the heading of the second-order Jahn- 
Teller effect. See: Pearson, R. G. Symmetry Rules for Chemical 
Reactions; Wiley-Interscience: New York, 1976. 

(6) Pearson, R. G. J. Chem. Educ. 1987,64,561-567. 
(7) Pearson, R. G. J. Am. Chem. SOC. 1988,110, 2092-2097. 
(8) Zhou, Z.; Parr, R. G. J. Am. Chem. SOC. 1989,111,7371-7379. 
(9) (a) Bartell, L. S. J. Chem. Educ. 1968,45, 754-758. (b) Burdett, 

J. K.; Coddens, B. K.; Kulkarni, G. V. Inorg. Chem. 1988,27,3259-3261. 
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Figure 2. Energy changes during the approach of two sub- 
systems: (a) HOMO-LUMO interaction; (b) HOMO-second 
filled orbital interaction. 

Table I. Results of Molecular Orbital Calculations for 
the clom-Boranesa 

borane idealized AE gap, borane idealized AE gap, 
anion geometry eV anion geometry eV 
BsHs2- o h  6.6 B7H7% Cgu 0 
BsHs2- D3h 1.1 B8Hs2- DZd 2.5 
B7W- Dsh 5.9 Bas2-  D u  3.2 
B7H7'- C Z ~  1.2 BsHs2- Czu 2.2 

From ref 10. 

The HOMO-LUMO gap is given for B6Hs2- and B7HT2-, 
for both the stable structure and unstable ones. In 
both cases the energy gap is much larger for the stable 
structure. For B8Hs2- the gap is calculated for three 
possible structures. No strong preference for any of 
these is found. In agreement with this, the ion has 
been found to be fluxional. 

An examination of orbital interactions when two 
partial systems approach each other can be informative. 
Assume that the HOMO and the LUMO play the 
dominant role in these interactions. Figure 2a shows 
the interaction of the frontier orbitals. The lower energy 
orbital, the HOMO, goes down in energy, and the LUMO 
goes up. There is a net energy lowering, and the gap 
increases. Figure 2b shows the case where the HOMO 
is interacting mainly with another filled orbital. Now 
the HOMO goes up in energy. The LUMO will mix 
primarily with other empty orbitals, which will lower 
its energy, as shown. The net effect is that the energy 
is raised and the HOMO-LUMO gap is diminished. 

This is the result for orbital interactions, or covalent 
bonding. What about ionic bonding? Consider an 
anion and a cation approaching each other, with a net 
decrease in energy. The HOMO will be an atomic 
orbital on the anion, and the LUMO will be an orbital 
of the cation, in the usual case. As the ions approach, 
the potential of the cation will lower the orbital energy 
of the HOMO, and the potential of the anion will raise 
the orbital energy of the LUMO. The HOMO and 
LUMO will move apart, just as in Figure 2a. 

Thus covalent and ionic bonding give similar results. 
However, it must be remembered that these remarks 
apply only to the orbital energies. The total energy 
must also include the nuclear-nuclear repulsion. 

The preceding examples refer to hardness as a 
function of nuclear positions. Equally important is the 
relationship of hardness to the electron density function, 
p. Will the hardness increase to a maximum value 88 

(10) Muetterties, E. L.; Beier, B. F. Bull. SOC. Chim. Belg. 1979,84, 

(11) See: Zhou, Z.; Parr, R. G. J. Am. Chem. SOC. 1990, 112, 5720- 
397-401. 

5724. 
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a set of trial wave functions becomes progressively 
better, approaching the true wave function? 

Some conclusions can be drawn, if we restrict 
ourselves to LCAO-MO theory. The eigenfunctions, 
&,, are given by 

Pearson 

conclusive. Fortunately Parr and Chattaraj have 
recently given a rigorous and general proof, using a 
combination of statistical mechanics and density func- 
tional theory.12 

One starts with a grand canonical ensemble of 
identical systems in equilibrium at temperature T and 
electronic chemical potential p. The softness, u, can 
then be define4 in terms of fluctuations in N from the 
average value N.13 

(9) 
where f l  = l /kT,  as usual. Soft systems have large 
fluctuations. 

The softness, which is an average value, can also be 
written as 

Q = (dN/dp), = f l (  (N - m2) 
where the $‘s are atomic orbitals. The orbital energies 
are found from the determinant 

(7) lHij - SijEl = 0 
The conditions for the solutions are that 

(dE,/dC,,) = 0; (dE/dC,,) = 0 (8) 
All the roots are maxima or minima on the energy- 
coefficient hypersurface. The lowest root is the absolute 
minimum, the highest root is the absolute maximum, 
and the remaining roots are local maxima and minima. 
The occupied orbitals, in virtually all cases, will have 
negative curvatures, (&/dC,12), corresponding to bond- 
ing MOs, or zero curvature, nonbonding orbitals. The 
empty orbitals will have positive curvatures, antibond- 
ing, or zero curvature. This applies to the HOMO and 
LUMO, in particular. 

The best values of the Cml’s define the best wave 
function, and the best value of p, that can be obtained 
from the selected basis set of AOs. Any change from 
the best values will cause the HOMO to rise in energy, 
or be unchanged, and the LUMO will fall in energy, or 
be unchanged. Thus the energy gap between them is 
a maximum for the best values of the coefficients, or 
the “best” electron density function. Usually, of course, 
this will not be the true density function. 

The conclusion that the hardness has a maximum 
value for the lowest energy solution can be readily 
verified in simple cases, such as the Huckel MO theory. 
Inclusion or omission of overlap integrals has no effect. 
Examples where all atoms are the same and cases where 
the atoms and the orbitals are different give the same 
result. 

Provided the SCF condition is met, calculations at  
the Hartree-Fock level also obey the mathematics of 
eqs 4 and 5. Therefore the HOMO-LUMO gap should 
also be amaximum in these cases. Because the solutions 
are normalized and orthogonal, and because the atomic 
orbitals are conserved, the coefficients for different MOs 
are not independent. Therefore wrong coefficients in 
one orbital will usually lead to wrong coefficients in all 
orbitals. 

We can also change the trial wave function for a 
system by enlarging the basis set of atomic orbitals. If 
this is done, what usually happens is that the HOMO 
is changed only slightly, usually to a more negative 
energy. But the LUMO is decreased in energy much 
more, so that the HOMO-LUMO gap is smaller, even 
though the total energy is decreased. At  the same time, 
the value of p becomes more negative, because of the 
decrease in ELUMO. This turns out to be important, as 
will be seen in the next section. 

The Principle of Maximum Hardness 
The evidence of the previous section is suggestive of 

some principle of maximum hardness (PMH). But none 
of it is rigorous enough or general enough to be 

where the PONS are the equilibrium probabilities. 

pN,i = exP[-fl(E~,i -NP)l (11) 
F is the grand partition function. 

A nonequilibrium ensemble would be characterized 
by a set of probabilities, P N , ~ ,  different from the 
equilibrium values. We can write 

Now the fluctuation-dissipation theorem of statistical 
mechanics14 may be used to show that d - u > 0. Thus 
the equilibrium state has the minimum softness, or 
maximum hardness, of all the possible states. 

The proof depends on p, v, and T being constant. 
The potential p appears in eq 11 because it is also the 
Lagrange multiplier for the normalization constraint. 
While the details are not simple, they are standard 
statistical mechanics. N is the number of electrons, 
not the number of molecules, as is more usual. 

The requirement that p and v remain constant is very 
restrictive. However, there are examples where it can 
be met. The potential of the nuclei, v, is constant if the 
geometry is fixed. For two-orbital, two-electron cases, 
the HOMO and the LUMO approach each other 
symmetrically, when overlap is ignored. Their mid- 
point, which is p, is unchanged. Alternant hydrocarbons 
behave in the same way. 

This agrees with the observations of the previous 
section, that the HOMO-LUMO gap is a maximum for 
the best values of the C,! coefficients. In other cases, 
while p is not constant, its change may be very small. 
To what extent this is true for Hartree-Fock calcula- 
tions is a question still to be examined. 

Fortunately, there are also ways to examine the 
principle of maximum hardness, even for changes in 
the nuclear positions.15 Start with a molecule in its 
equilibrium geometry and calculate the orbital energies 
at, or near, the HF level. Now distort the molecule a 
small distance along directions given by the vibrational 
symmetry coordinates, and recalculate the orbital 
energies. By using the complete set of symmetry 

(12) Parr, R. G.; Chattaraj, P. K. J. Am. Chem. Soc. 1991,113,1854- 

(13) Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 

(14) Chandler, D. Introduction to Modern Statistical Mechanics; 

(15) Pearson, R. G.; Palke, W. E. J. Phys. Chem. 1992,96,3283-3285. 

1856. 

6723-6726. 

Oxford Press: New York, 1987; Chapter 8. 
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Table 11. Distortions of Carbon Dioxide from the Eauilibrium Geometry 

Ri R2 0 -€HOMO CLUMO -2pb 2Vb 
1.1352 1.1352" 180° " 0.5423 0.2307 0.3116 0.7730 
1.1052 1.1652 180' 0.5405 0.2313 0.3092 0.7718 
1.1652 1.1052 180' 0.5405 0.2313 0.3092 0.7718 
1.1052 1.1052 180° 0.5438 0.2391 0.3047 0.7829 
1.1652 1.1652 180' 0.5407 0.2066 0.3341 0.7473 
1.1352 1.1352 175' 0.5419 0.2098 0.3321 0.7517 
1.1352 1.1352 185' 0.5419 1.2098 0.3321 0.7517 

a Equilibrium values. From ref 16. In atomic units. 

Figure 3. Vibrational modes of COz in D-h point group. 

coordinates, the hardness can be probed for all possible 
changes in the equilibrium geometry. 

Table 11 shows the results of such calculations for the 
COZ molecule.16 In order to understand the results, 
Figure 3 shows the normal modes of vibration of COZ. 
The asymmetric modes, nu and Z,, differ from the 
symmetric mode, Z,, in several respects. First of all, 
they destroy some elements of symmetry, changing the 
point group to Czu and C,,, respectively. 

Secondly, positive deviations from equilibrium pro- 
duce a configuration which gives the same average 
nuclear potential as negative deviations. Therefore, 
CHOMO, CLUMO, 1, and q must be the same for both. If we 
let Q represent a symmetry coordinate, then both (dp/ 
dQ) and (dq/dQ) must be equal to 0 at  the equilibrium 

Also, if we expand the energy as a power series in AQ, 
the linear term must vanish, and the quadratic term is 
the first nonvanishing one. Symmetry arguments can 
be used to show that (dvJdQ) and (dvJdQ) are separately 
equal to 0 when averaged." Here un and ue refer to the 
potentials of the nuclear repulsion and the nuclear- 
electron attraction, respectively. 

Hence, for the non-totally symmetric distortions, we 
have met the restrictions of Parr and Chattaraj. 
Accordingly, the hardness should be a maximum at 80. 
Table I shows that this is the case. Note that p can 
either decrease or increase upon distortion from equi- 
librium. 

The totally symmetric mode gives different results. 
The hardness and p both increase steadily as the nuclei 
approach each other. If the nuclei coalesced, p would 
be a maximum. This does not happen because at Qo 
we have the condition 

((dv,/dQ) + (dv,/dQ) ) = 0 (13) 
Thus the equilibrium value of Q is determined by the 

Hellman-Feynman theorem of balanced forces, and not 

80- 

(16) Palke, W. E. Unpublished calculations. 
(17) Pearson, R. G. Acc. Chem. Res. 1971,4, 152-160. 

Table 111. Changes in q for Bond-Forming Reactions 
reaction V R , ~  eV V P , ~  eV 

Na + C1= NaCl 
Li + F = LiF 
Li + H = LiH 
H + C1= HCl 
C + O = C O  
H + OH = H20 
CH3 + F = CH3F 
CH3 + C1= CH3Cl 
CH3 + Br = CH3Br 
CH3 + I = CH31 
Ni + CO = NiCO 
Cr + 6CO = Cr(CO)G 
Fe + 2CsHs = Fe(C5Hs)z 
Cr !8&H6 = Cr(C6H& 

0.8 
1.0 
2.3 
4.7 
4.9 
5.7 
3.2 
3.1 
3.2 
3.4 
3.3 
3.1 
2.8 
3.1 

4.8 
5.4 
3.8 
8.0 
7.9 
9.5 
9.4 
7.5 
5.8 
4.7 
3.6 
4.5 
3.8 
3.3 

a Hardness of reactants. Hardness of products. From ref 18. 

by the maximum value of p. This is not a violation of 
the PMH since neither u nor p remains constant. 

These results for COZ are typical. The same features 
have been found for H20,l6 NH3,15 and The 
latter molecule is a good test, since there are three 
symmetric modes and nine asymmetric ones. While 
the equilibrium distances and angles in a molecule are 
determined by eq 13, the existence of symmetry in a 
molecule is determined by the hardness. 

If the hardness decreases upon any distortion that 
destroys an element of symmetry, that element is stable. 
If 7 increases, the molecule will spontaneously distort 
and the element will vanish. An example would be 
NH3 in a planar form.15 These results are strikingly 
similar to those deduced from the second-order Jahn- 
Teller e f f e ~ t . ~  

Other Observations 

There are still further reasons to believe that in- 
creasing hardness accompanies the approach of a 
chemical system to equilibrium. Consider the overall 
process 

N(g) + 3H(g) = NH,(g) (14) 
which is very favorable energetically. We can calculate 
the overall changes in p and in 7, using experimental 
values of I and A and eq 4. We find that p increases 
from -7.2 to -2.6 eV, and q increases from 6.4 to 8.2 eV. 

Examination of a large number of reactions where a 
few atoms or radicals form a molecule always shows 
that the hardness increases.18 The electronic chemical 
potential may increase or decrease. Table I11 gives a 
number of examples of the changes in 7.l9 

These results are consistent with Figure 1. As long 
as the energy is decreasing, the HOMO-LUMO gap is 

(18) Pearson, R. G. Inorg. Chim. Acta 1992, 198-200, 781-786. 
(19) To find I and A for a mixed system, take the smallest I and the 

most positive value of A. Perdew, J. P.; Parr, R. G.; Balduz, J. L. Phys. 
Reu. Lett. 1982, 49, 1691-1694. 
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numbers the hardness shows a local maximum. In- 
creased stability is accompanied by increasing hardness. 

As N becomes very large, we approach metallic 
lithium. I becomes equal to A,  and both are equal to 
the work function for the metal. The reason for this, 
of course, is the band structure of the solid. In a metal, 
the valence band is only partly filled, so the highest 
occupied level has virtually the same energy as the 
lowest empty one. 

The process 

Li(g) = Li(s) (16) 
is downhill in energy, but the hardness decreases from 
2.4 to 0.0 eV. The potential p remains surprisingly 
constant, being -3.0 eV for lithium atoms and -3.1 eV 
for lithium metal.22 Since the nuclear potential changes 
greatly in eq 16, there is no violation of the PMH. 

For insulating solids and semiconductors there is also 
an overall decrease in q in going from the gas phase to 
the s01id.l~ However, just as for single molecules, the 
space group symmetry of solids appears to be deter- 
mined by the energy gap. The most stable structure 
is the one with the largest gap.g 

Just as for the aromatic hydrocarbons, the stability 
of the fullerenes, C,, depends on the HOMO-LUMO 
gapaZ3 In addition, there is a geometric factor in that 
there must be the right number of carbon atoms to 
form a suitable cage. Calculations, using density 
functional theory, show that C ~ Z ,  c60, CTO, CW, and CIOO 
have a large gap and should be stable; but Clz and Cz4 
have a zero gap and should not exist. 

Concluding Remarks 

The examples of the preceding reactions are all 
consistent with the statement that “at equilibrium, 
chemical systems are as hard as possible”. The hardness 
is a maximum for changes that do not also change p or 
v, as predicted by Parr and Chattaraj. Some relaxation 
of these restrictions seems to be allowable, and it is 
possible that a more general, and less restrictive, rule 
may be found. 

A potential use for the PMH is in finding the best 
approximate wave function for a chemical system. Since 
changing the basis set usually changes 1.1 as well as 7, 
this is a case where the more general rule is needed. In 
the case of isomers where a difference in the bonding 
between atoms occurs, the PMH does not predict that 
the most stable isomer has the largest HOMO-LUMO 
gap. Such isomers will necessarily have quite different 
values of v, though p can be fairly constant. An 
examination of a number of isomers show that the 
nuclear-nuclear repulsions most often dominate the 
relative stabilities. 

Usually each isomer has a local energy minimum in 
the energy-nuclear position hypersurface. The same 
rules as outlined for COZ, NH3, CZH6, and HZO will apply 
to each isomer. The hardness should be a maximum 
with respect to antisymmetric distortions from the 
geometry of the local energy minimum. 

The factors that change the hardness are fairly well 
understood, though a calculation from first principles 

(22) The values of p are remarkably similar for all metal atoms and 

(23) Kurita, M.; Kobayoshi, K.; Kumahora, H.; Tago, K.; Ozawa, K. 
their solid metal forms. Pearson, R. G. Chem. Br. 1991, 444-447. 

Chem. Phys. Lett. 1991,188, 181-185. 

2.0 I 

-0.54 
10 20 30 40 50 so 70  

N 

Figure 4. Second energy differences, A2, for lithium clusters 
versus the number of atoms, N.  Reprinted with permission from 
ref 21. Copyright 1992 National Academy of Sciences. 
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N 

Figure 5. Chemical hardness, I -  A ,  versus the number of atoms, 
N ,  for lithium clusters. Reprinted with permission from ref 21. 
Copyright 1992 National Academy of Sciences. 

increasing. A maximum in q is not reached when the 
total energy is a minimum, because Figure 1 does not 
include the nuclear repulsion term. The PMH is not 
violated because v and p are not constant. 

The mass spectra of clusters, both metallic and 
nonmetallic, show enhanced intensity for certain num- 
bers of atoms, called magic numbers. For clusters of 
alkali metal atoms, the magic numbers are N = 2, 8, 
(18), 20, 34, 40, and 58.20 Figures 4 and 5 show the 
results of some theoretical calculations on lithium 
clusters using the spherical jellium background model.21 

The cluster stability is shown by plotting the second 
energy difference. 

Az = E(N+l) - E(N-1) - Z(N) (15) 

Figure 4 shows that A2 is close to 0, except for N = 
2,8,18,20,30,40, and 58. The peaks at  these numbers 
show that the model is working well. 

Figure 5 shows a plot of q as a function of N, using 
eqs 4 and 5. There is a general decrease of (I  - A )  as 
N increases. However, there are pronounced peaks 
again at  N = 2,8,  18,20,34,40, and 58. At the magic 

(20) de Heer, W. A.; Knight, W. D.; Chou, M. Y.; Cohen, M. L. Solid 

(21) Harbola, M. K. Proc. Natl. Acad. Sci. U S A .  1992,89,1036-1039. 
State Physics 1987,40,93-181. 
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is not s t ra ightfor~ard.~~ The factors are the changes 
in the kinetic energy and the interelectronic repulsion 
as p is changed. Changes in p are due to changes in N ,  
or to changes in the shape factor of p at constant N. 

When a subshell is being filled, the changes in 
interelectronic repulsion are dominant. When a shell 
is filled, there is a big change in kinetic energy for the 
next electron added. This causes a large change in qSz5 
There are a number of important consequences of this. 
These will be discussed in the following Account in this 
issue, by Zhou and Parr. 

A corollary of the PMH has to do with the properties 
of the transition state. Long ago Bader pointed out 
that an activated complex must have very low lying 
excited states.26 We can now speculate that it must 
have a minimum energy gap between the HOMO and 
the LUMO. Certainly this should be so for a reaction 
coordinate (for decomposition) that is not totally 

(24) Berkowitz, M.; Ghosh, S. K.; Parr, R. G. J.  Am. Chem. SOC. 1985, 

(25) Peareon, R. G. J. Am. Chem. SOC. 1986,107,6801-6806. 
(26) Bader, R. F. W. Can. J. Chem. 1962,40, 1164-1168. 
(27) Datta, D. J .  Phys. Chem. 1992,96,2409-2410. 

107,6811-6815. 
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symmetric. There is some evidence that the gap is a 
minimum, even when the transition state is of low 

It appears that the PMH is a fundamental, broadly 
applicable electronic-structure rule. In this it resembles 
the other general rule derived from density functional 
theory: the electronic chemical potential must be 
constant everywhere in a chemical system at equilib- 
rium!2 This is the famous “electronegativity equaliza- 
tion” rule, if eq 4 is used to define the electronegativity. 

To appreciate the broad applicability of the PMH, 
one need only look at the proof as given by eqs 9-12. 
These use only the laws of probability applied to large 
systems. Yet the conclusion can be applied at once to 
properties of the frontier orbitals of single molecules. 
It is noteworthy that this application seems to work so 
well, even though eq 5 is a fairly severe approximation. 
Also all levels of MO theory seem to be covered equally 
well. 

Z am indebted to R. G.  Parr and W. E.  Palke for many 
discussions. 


